
Inhaltsverzeichnis
Ziel des Projekts... 1

Darstellung der Daten.. 1
TFT-Display.. 1
Serieller Monitor... 1

Vorbereitung...2
Benötigte Bauteile.. 2
Pinbelegung ESP32-Wroom...2
Pinbelegung Arduino Nano ESP32.. 3
ESP32-Wroom: Board installieren:.. 3
Arduino Nano ESP32: Board installieren:...4
Benötigte Bibliotheken...4
Erläuterung zu JSON.. 5
 Abruf der Daten von openweathermap.org..6

Vorbereitung...6
Aufruf der API... 7

Das Programm.. 7
Einbinden der Bibliotheken und Definition der Variablen..7
setup-Teil... 9
Funktion ServerAntwortHolen()..9
loop-Teil...10

ESP32-Wroom/Arduino Nano ESP32 Wetterdaten TFT mit Openweather-API Seite 1

Ziel des Projekts
Mit der API (Application Programming Interface = Programmierschnittstelle) von
Openweathermap.org und den damit erhobenen Daten sollen die Wetterdaten auf einem
TFT-Display und in etwas ausführlicherer Form im Seriellen Monitor angezeigt werden.

Darstellung der Daten

TFT-Display

Serieller Monitor

ESP32-Wroom/Arduino Nano ESP32 Wetterdaten TFT mit Openweather-API Seite 2

Vorbereitung
Zunächst benötigst du einen API-Schlüssel von Openweathermap.org:

https://openweathermap.org/api

Um den Zugang zu nutzen, musst du deine Zahlungsdaten hinterlegen.

Der API-Schlüssel erlaubt 1000 Zugriffe am Tag. Das entspricht einem Zugriff alle 86,4 Sekunden.

Quelle: 🔗https://openweathermap.org/price#weather

Um sicherzugehen kannst du die Anzahl der Zugriffe beschränken:
Quelle: 🔗https://home.openweathermap.org/subscriptions

Du kannst die Anzahl der Zugriffe feststellen:

Quelle: https://home.openweathermap.org/statistics/onecall_30🔗

Benötigte Bauteile
ESP32-Wroom oder Arduino Nano ESP32
TFT

Leitungsdrähte

Pinbelegung ESP32-Wroom

https://home.openweathermap.org/statistics/onecall_30
https://home.openweathermap.org/subscriptions
https://openweathermap.org/price#weather
https://openweathermap.org/api

ESP32-Wroom/Arduino Nano ESP32 Wetterdaten TFT mit Openweather-API Seite 3

Pinbelegung Arduino Nano ESP32

ESP32-Wroom: Board installieren:

Trage unter Datei -> Einstellungen eine zusätzliche Boardverwalter-URL ein:

https://espressif.github.io/arduino-esp32/package_esp32_dev_index.json

ESP32-Wroom/Arduino Nano ESP32 Wetterdaten TFT mit Openweather-API Seite 4

➔ Icon für den Boardverwalter anklicken

oder:

➔Werkzeuge-> Board -> Boardverwalter

➔nach ESP32 suchen

➔Board installieren

Anschließend wird das Board ausgewählt:

Arduino Nano ESP32: Board installieren:

➔ Icon für den Boardverwalter anklicken

oder:

➔Werkzeuge-> Board ->

Boardverwalter

➔nach ESP32 suchen

➔Board installieren

Benötigte Bibliotheken

1,77 Zoll/1,8 Zoll TFT

ESP32-Wroom/Arduino Nano ESP32 Wetterdaten TFT mit Openweather-API Seite 5

Erläuterung zu JSON
Die Daten liegen im JSON-Format (JavaScript Object Notation) vor. JSON dient dem
Austausch von Daten zwischen einem Server und einer Webanwendung. JSON-Daten sind
eine Sammlung von Schlüssel-Wert-Paaren. Die Bibliothek filtert aus den Daten diese
Schlüssel-Wert-Paare heraus.

Beispiel JSON-Werte beim Aufruf für Bergisch Gladbach

Schlüssel und Wert werden in eckige Klammern eingeschlossen.

2,4 Zoll TFT

ESP32-Wroom/Arduino Nano ESP32 Wetterdaten TFT mit Openweather-API Seite 6

Abruf der Daten von openweathermap.org

Vorbereitung
Du benötigst die Geokoordinaten (Längengrad = lon, Breitengrad = lat) des gewünschten Orts. Am
einfachsten geht das mit Openweathermap selbst.

ESP32-Wroom/Arduino Nano ESP32 Wetterdaten TFT mit Openweather-API Seite 7

Aufruf der API
http://api.openweathermap.org/data/3.0//onecall?
&lat=50.99111161485325&lon=7.129065378199176&APPID=xxxxxxxx&units=metric&e
xclude=daily,hourly,minutely

➔ lat, lon -> Breitengrad, Längengrad

➔APPID -> deine APPID (ich habe meine eigene unkenntlich gemacht)

➔units=metric -> metrische Maßangaben, die Temperatur wird als Standard in Kelvin angezeigt

➔exclude=daily,hourly,minutely -> keine Daten der Wettervorhersage anzeigen
➔ lang=de -> Ausgabe der Beschreibungen auf deutsch

Manchmal werden mehrere Versuche benötigt um die Zeit zu synchronisieren und
den Openweather-Server zu erreichen.

Das Programm

Einbinden der Bibliotheken und Definition der Variablen
Der einzige Unterschied zwischen den beiden Microkontrolern ist die Zuordnung der SPI-Pins.

#include "WiFi.h"

#include "HTTPClient.h"

#include "Arduino_JSON.h"

#include "time.h"

#include "TimeLib.h"

#include "Adafruit_GFX.h"

#include "Adafruit_ST7735.h"

/*

 SPI-Pins

 DIN 23

 CLK 18

 CS 5

 RST 22

 DC 2

*/

define TFT_CS 5

define TFT_RST 22

define TFT_DC 2

Adafruit_ST7735 tft = Adafruit_ST7735(TFT_CS, TFT_DC, TFT_RST);

char Router[] = "Router_SSID";

char Passwort[] = "xxxxxxx";

// NTP-Server aus dem Pool

#define Zeitserver "de.pool.ntp.org"

ESP32-Wroom/Arduino Nano ESP32 Wetterdaten TFT mit Openweather-API Seite 8

/*

 Liste der Zeitzonen

 https://github.com/nayarsystems/posix_tz_db/blob/master/zones.csv

 Zeitzone CET = Central European Time -1 -> 1 Stunde zurück

 CEST = Central European Summer Time von

 M3 = März, 5.0 = Sonntag 5. Woche, 02 = 2 Uhr

 bis M10 = Oktober, 5.0 = Sonntag 5. Woche 03 = 3 Uhr

*/

#define Zeitzone "CET-1CEST,M3.5.0/02,M10.5.0/03"

// time_t enthält die Anzahl der Sekunden seit dem 1.1.1970 0 Uhr

time_t aktuelleZeit;

/*

 Struktur tm

 tm_hour -> Stunde: 0 bis 23

 tm_min -> Minuten: 0 bis 59

 tm_sec -> Sekunden 0 bis 59

 tm_mday -> Tag 1 bis 31

 tm_mon -> Monat: 0 (Januar) bis 11 (Dezember)

 tm_year -> Jahre seit 1900

 tm_yday -> vergangene Tage seit 1. Januar des Jahres

 tm_isdst -> Wert > 0 = Sommerzeit (dst = daylight saving time)

*/

tm Zeit;

// Daten für die API von Openweather -> muss angepasst werden

String APIKey = "4d26a936a4fe519ff3678dxxxxxxxxxx";

// lon = longitude = Breitengrad, lat = latitude = Längengrad

// mit Kartenprogramm oder Openweathermap bestimmen

// Daten für Bergisch Gladbach

String Koordinaten = "&lat=50.99111161485325&lon=7.129065378199176";

String Stadt ="Bergisch Gladbach";

/*

 Aktualisierungs-Intervall

 1000 Zugriffe pro Tag kostenlos

 86.400 Sekunden = 1 Tag -> Abruf alle 86,4 Sekunden möglich

 zu Testzwecken das Intervall kurz halten und später

 auf 10 Minuten (oder länger) zu setzen

*/

unsigned long Intervall = 600000;

// String für die vom Server gelieferten Rohdaten

String JSONDaten;

ESP32-Wroom/Arduino Nano ESP32 Wetterdaten TFT mit Openweather-API Seite 9

setup-Teil
void setup()

{

 // Zeitzone: Parameter für die zu ermittelnde Zeit

 configTzTime(Zeitzone, Zeitserver);

 Serial.begin(9600);

 // WiFi starten und Verbindung aufbauen

 WiFi.begin(Router, Passwort);

 while (WiFi.status() != WL_CONNECTED)

 {

 delay(200);

 Serial.print(".");

 }

 // SSID des Routers anzeigen

 Serial.println();

 Serial.print("Verbunden mit ");

 Serial.println(WiFi.SSID());

 // IP anzeigen

 Serial.print("IP: ");

 Serial.println(WiFi.localIP());

 // TFT starten schwarzer Hintergrund

 tft.initR(INITR_BLACKTAB);

 // Rotation anpassen Querformat

 tft.setRotation(1);

 // Schriftgröße

 tft.setTextSize(1);

}

Funktion ServerAntwortHolen()
Im loop-Teil wird die Funktion ServerAntwortholen() aufgerufen. Sie holt die Wetterdaten als
String, der im loop-Teil in Schlüssel-Wert-Paare umgewandelt wird.

String ServerAntwortHolen(const char* OpenweatherServer)

{

 WiFiClient Client;

 HTTPClient httpClient;

 httpClient.begin(Client, OpenweatherServer);

 // Anfrage senden

 int AntwortCode = httpClient.GET();

 String ServerAntwort = "";

ESP32-Wroom/Arduino Nano ESP32 Wetterdaten TFT mit Openweather-API Seite 10

 // Antwort erhalten: Code 200

 if (AntwortCode == 200)

 {

 // Wetter als String holen, wird später in ein JSON-Objekt umgewandelt

 ServerAntwort = httpClient.getString();

 // Rohdaten anzeigen

 // Serial.println(Serverantwort);

 }

 else

 {

 Serial.println("Der Server ist nicht erreichbar!");

 }

 httpClient.end();

 return ServerAntwort;

}

loop-Teil
void loop()

{

 tft.fillScreen(ST7735_BLACK);

 tft.setTextColor(ST7735_GREEN);

 tft.setCursor(1, 5);

 // aktuelle Zeit holen

 time(&aktuelleZeit);

 // localtime_r -> Zeit in die lokale Zeitzone setzen

 localtime_r(&aktuelleZeit, &Zeit);

 // Tag: führende 0 ergänzen

 if (Zeit.tm_mday < 10)

 {

 Serial.print("0");

 tft.print("0");

 }

 Serial.print(Zeit.tm_mday);

 Serial.print(".");

 tft.print(Zeit.tm_mday);

 tft.print(".");

 // Monat: führende 0 ergänzen

 if (Zeit.tm_mon < 9)

 {

 Serial.print("0");

 tft.print("0");

 }

 // Zählung des Monats beginnt mit 0 -> 1 hinzufügen

 Serial.print(Zeit.tm_mon + 1);

 Serial.print(".");

 tft.print(Zeit.tm_mon + 1);

ESP32-Wroom/Arduino Nano ESP32 Wetterdaten TFT mit Openweather-API Seite 11

 tft.print(".");

 // Anzahl Jahre seit 1900

 Serial.print(Zeit.tm_year + 1900);

 Serial.print(" ");

 tft.print(Zeit.tm_year + 1900);

 tft.print(" ");

 // Stunde: wenn Stunde < 10 -> 0 davor setzen

 if (Zeit.tm_hour < 10)

 {

 Serial.print("0");

 tft.print("0");

 }

 Serial.print(Zeit.tm_hour);

 Serial.print(":");

 tft.print(Zeit.tm_hour);

 tft.print(":");

 // Minuten

 // wenn Minute < 10 -> 0 davor setzen

 if (Zeit.tm_min < 10)

 {

 Serial.print("0");

 tft.print("0");

 }

 Serial.print(Zeit.tm_min);

 Serial.print(":");

 tft.print(Zeit.tm_min);

 tft.print(":");

 // Sekunden

 if (Zeit.tm_sec < 10)

 {

 Serial.print("0");

 tft.print("0");

 }

 Serial.print(Zeit.tm_sec);

 tft.print(Zeit.tm_sec);

 Serial.println();

 // Wetterdaten holen, wenn WiFi verbunden ist

 if (WiFi.status() == WL_CONNECTED)

 {

 // Name des Servers und Daten übergeben

 String OpenweatherServer = "http://api.openweathermap.org/data/3.0//onecall?" + Koordinaten;

 OpenweatherServer = OpenweatherServer + "&APPID=" + APIKey + "&units=metric&exclude=daily,hourly,minutely";

 // Server anzeigen

 Serial.println(OpenweatherServer);

 // Daten vom Server abrufen

 // c_str() liefert einen mit \0 beendeten String

 JSONDaten = ServerAntwortHolen(OpenweatherServer.c_str());

ESP32-Wroom/Arduino Nano ESP32 Wetterdaten TFT mit Openweather-API Seite 12

 /*

 parse: Zeichenkette im JSON-Format in ein JavaScript-Objekt umzuwandeln

 damit die Daten (Schlüssel-Wert-Paare)ausgewertet werden können

 z.B. ["current"] ["temp"]

 */

 JSONVar Objekt = JSON.parse(JSONDaten);

 // Stadt

 Serial.println(Stadt);

 tft.setCursor(1, 15);

 tft.println(Stadt);

 tft.drawFastHLine(1, 25, tft.width(), ST7735_GREEN);

 tft.setTextColor(ST7735_WHITE);

 // Temperatur

 Serial.print("Temperatur: ");

 double Temperatur = Objekt["current"]["temp"];

 String AnzeigeTemperatur = String(Temperatur);

 AnzeigeTemperatur.replace(".", ",");

 Serial.print(AnzeigeTemperatur);

 Serial.println("°C");

 tft.setCursor(1, 33);

 tft.print("Temperatur: " + AnzeigeTemperatur + char(247) + "C");

 // Luftdruck

 Serial.print("Luftdruck: ");

 Serial.print(Objekt["current"]["pressure"]);

 Serial.println(" hPa");

 tft.setCursor(1, 46);

 tft.print("Luftdruck: ");

 tft.print(Objekt["current"]["pressure"]);

 tft.println(" hPa");

 // Luftfeuchtigkeit

 Serial.print("Luftfeuchtigkeit: ");

 Serial.print(Objekt["current"]["humidity"]);

 Serial.println("%");

 tft.setCursor(1, 59);

 tft.print("Luftfeuchtigkeit: ");

 tft.print(Objekt["current"]["humidity"]);

 tft.println("%");

 // Windgeschwindigkeit

 Serial.print("Windgeschwindigkeit: ");

 double Windgeschwindigkeit = Objekt["current"]["wind_speed"];

 String AnzeigeWindgeschwindigkeit = String(Windgeschwindigkeit);

 AnzeigeWindgeschwindigkeit.replace(".", ",");

 Serial.print(AnzeigeWindgeschwindigkeit);

 Serial.println(" m/s");

 tft.setCursor(1, 72);

 tft.print("Wind: " + AnzeigeWindgeschwindigkeit);

 tft.println(" m/s");

ESP32-Wroom/Arduino Nano ESP32 Wetterdaten TFT mit Openweather-API Seite 13

 // Windrichtung

 Serial.print("Windrichtung: ");

 Serial.print(Objekt["current"]["wind_deg"]);

 Serial.println("°");

 // Wetterlage

 Serial.print("Wetterlage: ");

 String Wetterlage = Objekt["current"]["weather"][0]["main"];

 tft.setCursor(1, 85);

 tft.print("Wetterlage:");

 if (Wetterlage == "Clear")

 {

 Serial.println("klarer Himmel");

 tft.print("klarer Himmel");

 }

 if (Wetterlage == "Mist")

 {

 Serial.println("Nebel");

 tft.print("Nebel");

 }

 if (Wetterlage == "Clouds")

 {

 Serial.println("wolkig");

 tft.println("wolkig");

 }

 if (Wetterlage == "Rain")

 {

 Serial.println("Regen");

 tft.println("Regen");

 }

 if (Wetterlage == "Snow")

 {

 Serial.println("Schneefall");

 tft.println("Schneefall");

 }

 if (Wetterlage == "Drizzle")

 {

 Serial.println("Nieselregen");

 tft.println("Nieselregen");

 }

 if (Wetterlage == "Thunderstorm")

 {

 Serial.println("Gewitter");

 tft.println("Gewitter");

 }

 // Sonnenaufgang als UNIX-Time

 long Sonnenaufgang = Objekt["current"]["sunrise"];

 Serial.print("Sonnenaufgang: ");

ESP32-Wroom/Arduino Nano ESP32 Wetterdaten TFT mit Openweather-API Seite 14

 // Zeit des Sonnenaufgangs setzen

 setTime(Sonnenaufgang);

 String ZeitSonnenaufgang;

 // Uhrzeit bestimmen

 if (hour(Sonnenaufgang) + 2 < 10) ZeitSonnenaufgang = "0";

 ZeitSonnenaufgang = ZeitSonnenaufgang + String(hour(Sonnenaufgang) + 2) + ":";

 if (minute(Sonnenaufgang) < 10) ZeitSonnenaufgang = ZeitSonnenaufgang + "0";

 ZeitSonnenaufgang = ZeitSonnenaufgang + String(minute(Sonnenaufgang));

 Serial.println(ZeitSonnenaufgang);

 // Sonnenuntergang

 long Sonnenuntergang = Objekt["current"]["sunset"];

 Serial.print("Sonnenuntergang: ");

 setTime(Sonnenuntergang);

 String ZeitSonnenuntergang;

 if (hour(Sonnenuntergang) + 2 < 10) ZeitSonnenuntergang = "0";

 ZeitSonnenuntergang = ZeitSonnenuntergang + String(hour(Sonnenuntergang) + 2) + ":";

 if (minute(Sonnenuntergang) < 10) ZeitSonnenuntergang = ZeitSonnenuntergang + "0";

 ZeitSonnenuntergang = ZeitSonnenuntergang + String(minute(Sonnenuntergang));

 Serial.println(ZeitSonnenuntergang);

 tft.setCursor(1, 98);

 tft.print("Sonnenuntergang: " + ZeitSonnenuntergang);

 // letzte Messung

 long letzteMessung = Objekt["current"]["dt"];

 Serial.print("letzte Messung: ");

 setTime(letzteMessung);

 String ZeitLetzteMessung;

 if (hour(letzteMessung) + 2 < 10) ZeitLetzteMessung = "0";

 ZeitLetzteMessung = ZeitLetzteMessung + String(hour(letzteMessung) + 2) + ":";

 if (minute(letzteMessung) < 10) ZeitLetzteMessung = ZeitLetzteMessung + "0";

 ZeitLetzteMessung = ZeitLetzteMessung + String(minute(letzteMessung));

 Serial.println(ZeitLetzteMessung);

 Serial.println("-----------------------------");

 tft.setCursor(1, 111);

 tft.print("letzte Messung: " + ZeitLetzteMessung);

 }

 delay(Intervall);

}

Hartmut Waller (https://hartmut-waller.info/arduinoblog) letzte Änderung: 02.12.25

https://hartmut-waller.info/arduinoblog/esp32-wroom-wetterdaten-von-openweather-auf-einem-tft-anzeigen/

	Ziel des Projekts
	Darstellung der Daten
	TFT-Display
	Serieller Monitor

	Vorbereitung
	Benötigte Bauteile
	Pinbelegung ESP32-Wroom
	Pinbelegung Arduino Nano ESP32
	ESP32-Wroom: Board installieren:
	Arduino Nano ESP32: Board installieren:
	Benötigte Bibliotheken
	Erläuterung zu JSON
	Abruf der Daten von openweathermap.org
	Vorbereitung
	Aufruf der API

	Das Programm
	Einbinden der Bibliotheken und Definition der Variablen
	setup-Teil
	Funktion ServerAntwortHolen()
	loop-Teil

