
Smarthome Seite 1

Dokumentation Smarthome

Ziele des Projekts
• Der Server baut unabhängig vom lokalen WLAN-Netz ein eigenes Netz (Access-Point) auf

• die beiden ESPs messen jeweils die Temperatur

• ein Spannungsmesser misst die an einem Solarpanel anliegende Spannung

• ein Mikroschalter teilt mit, ob das Fenster offen oder geschlossen ist

• ein Regensonsor beurteilt die Wetterlage (trocken oder Regen)

• ein Fotowiderstand schaltet bei Dämmerung/Dunkelheit eine LED ein

• der als Server agierende ESP sammelt die Daten (Spannung am Solarpanel, Zustand des
Fensters, Temperaturen und Wetterlage) und stellt sie auf einer Webseite dar

Benötigte Bauteile
2 ESP32
2 DHT22
Solarpanel
Spannungsmesser
Mikroschalter
Fotowiderstand
LED
Widerstand 10 kΩ
Widerstand 220 Ω

Smarthome Seite 2

Schaltpläne

Server

Klient

Smarthome Seite 3

Die Programme

Server

// benötigte Bibliotheken
#include "WebServer.h"
#include "WiFi.h"
#include "DHT.h"

// digitaler Pin des DHT-Sensors
#define SENSOR_DHT 19

// digitaler Pin Schalter
#define Schalter 18

// analoger Pin Spannungssensor
#define SpannungsSensor 32

// analoger Pin Regensensor
#define Tropfensensor 33

// Sensortyp DHT festlegen
// DHT22 oder DHT11
#define SensorTyp DHT22

// Sensor DHT einen Namen zuweisen (dht)
DHT dht(SENSOR_DHT, SensorTyp);

// IP-Adressen des Klienten
const char* Klient = "192.168.4.2";

// String für die Messung
String Messung;

// Netzwerkname und Passwort des ESP
char Router[] = "ESPServer";
char Passwort[] = "espserver";

// der ESP agiert gleichzeitig als Server (Gateway) und Klient
IPAddress ip(192, 168, 4, 1);
IPAddress gateway(192, 168, 4, 1);
IPAddress subnet(255, 255, 255, 0);

// Webserver dem Port 80 zuordnen
WebServer Server(80);

// HTML-Grundstruktur
String Seitenkopf =
 "<head><style>"

 // farbiger Button mit CSS
 ".farbigeBox {"
 "background-color: ivory;"
 "color: black;"
 "width: 650px;"
 "padding: 20px;"
 "text-align: left;"
 "font-size: 40px;"
 "font-family: arial;"
 "}"
 "</style>"

 // refresh -> Seite automatisch aktualisieren
 "<meta http-equiv=\"refresh\" content=\"30\"></head>";
void setup()

Smarthome Seite 4

{
 Serial.begin(9600);

 // ESP als Access-Point (AP) konfigurieren
 WiFi.softAPConfig(ip, gateway, subnet);

 // Access-Point starten
 WiFi.softAP(Router, Passwort);

 // / -> Aufruf der URL, SeiteBauen -> Aufruf der Funktion
 Server.on("/", SeiteBauen);
 Server.begin();

 // DHT starten
 dht.begin();

 // Schalter als Eingang
 pinMode(Schalter, INPUT);
}

void loop()
{
 // auf Anfragen warten
 Server.handleClient();

 // Messdaten vom Klienten holen
 DatenHolen();
}

void SeiteBauen()
{
 // Messwert DHT ermitteln
 // . durch , ersetzen
 String Temperatur = String(dht.readTemperature());
 Temperatur.replace(".", ",");

 // Spannung Solarpanel messen
 float geleseneSpannung = analogRead(SpannungsSensor) * (3.3 / 4096.0);

 // in String umwandlen, . durch , ersetzen
 String EingangsSpannung = String(geleseneSpannung * 5);
 EingangsSpannung.replace(".", ",");

 // Zustand Schalter
 String ZustandSchalter;
 if (digitalRead(Schalter)) ZustandSchalter = "offen";
 else ZustandSchalter ="geschlossen";

 // Tropfensensor
 String Regenmenge;
 float MesswertTropfensensor = analogRead(Tropfensensor);

 // Maximalwert 4095
 if (MesswertTropfensensor > 4000) Regenmenge = "trocken";
 else Regenmenge = "Regen";
 Serial.println(MesswertTropfensensor);

 // Seite zusammen bauen
 String Seite = "";
 Seite += Seitenkopf;
 Seite += "<h1 align=\"left\">Messdaten</h1>";
 Seite += "<div align=\"left\";>";

 Seite += "<div class=\"farbigeBox\">";
 Seite += "Wohnzimmer: ";
 Seite += Temperatur + "°C";
 Seite += "
";
 Seite += "Esszimmer:";

Smarthome Seite 5

 Seite += String(Messung);

 Seite += "
";
 Seite += "Energie am Solarpanel: " + EingangsSpannung + " V";

 // Fenster
 Seite += "
";
 Seite += "Fenster Wohnzimmer: " + ZustandSchalter;

 // Tropfensensor
 Seite += "
";
 Seite += "Wetterlage: " + Regenmenge;
 Seite += "</div>";

 // Button aktualisieren
 Seite += "<hr><input style=\"font-size:16pt; font-weight:bold;";
 Seite += "background-color:#55A96B;";
 Seite += "display:block; cursor:pointer;\"type=\"button\"";

 // IP für den Button aktualisieren (location.href)
 // muss mit dem Wert für IPAdress übereinstimmen (. statt ,)
 Seite += " onClick=\"location.href='http://192.168.4.1'\" value=\"aktualisieren\">";
 Seite += "<hr>";

 // Seite übermitteln
 Server.send(200, "text/html", Seite);
}

void DatenHolen()
{
 WiFiClient client;

 // wenn der Klient nicht verbunden ist -> zurück und neuer Versuch
 if (!client.connect(Klient, 80))
 {
 return;
 }

 /*
 GET-Anfrage senden
 /Messung -> Adresse (URL) für die zu übermittelnden Werte
 wird vom Klienten festgelegt
 Klient -> der zweite ESP
 HTTP/1.1 -> Abfrageprotokoll
 \r\n -> return mit anschließender neuer Zeile
 */
 client.print(String("GET ") + "/Messung" + " HTTP/1.1\r\n" + Klient + "\r\n");
 unsigned long LetzteZeit = millis();

 // Wartezeit bis zur Übermittlung der Daten
 while (!client.available() && ((millis() - LetzteZeit) < 3000))
 {
 delay(1);
 }

 // der Klient ist verfügbar
 while (client.available())
 {
 // den mit GET erhaltenen String bis zum return (\r) lesen
 Messung = client.readStringUntil('\r');
 }
}

Smarthome Seite 6

Klient
// benötigte Bibliotheken
#include "WebServer.h"
#include "WiFi.h"
#include "DHT.h"

// digitaler Pin DHT-Sensor
int SENSOR_DHT = 19;

// Sensortyp festlegen
// DHT22 oder DHT11
#define SensorTyp DHT22

// Sensor DHT einen Namen zuweisen
DHT dht(SENSOR_DHT, SensorTyp);

// analoger Pin Fotowiderstand 35
#define Fotowiderstand 35

// digitaler Pin LED
#define LED 18

// ESP als AP
char Router[] = "ESPServer";
char Passwort[] = "espserver";

// IP des Klienten
IPAddress ip(192, 168, 4, 2);

// Gateway ist der der andere ESP
IPAddress gateway(192, 168, 4, 1);
IPAddress subnet(255, 255, 255, 0);

// Webserver dem Port 80 zuordnen
WebServer Server(80);

void setup()
{
 Serial.begin(9600);
 pinMode(LED, OUTPUT);

 // WiFi starten
 WiFi.config(ip, gateway, subnet);
 WiFi.begin(Router, Passwort);

 // Adresse (URL)festlegen (/Messung)
 // SeiteBauen -> zu übermittelnde Daten
 Server.on("/Messung", SeiteBauen);
 Server.begin();

 // DHT starten
 dht.begin();
}

void loop()
{
 // auf Anfragen warten
 Server.handleClient();
}

void SeiteBauen()
{
 // Temperatur messen
 // . durch , ersetzen
 String Temperatur = String(dht.readTemperature());
 Temperatur.replace(".", ",");

Smarthome Seite 7

 // Wert Fotowiderstand lesen
 int SensorWert = analogRead(Fotowiderstand);

 // Messwert des Fotowiderstands anzeigen
 // Wert 1000 an Gegebenheiten anpassen
 // Serial.println(SensorWert);
 // delay(500);
 if (SensorWert < 1000) digitalWrite(LED, HIGH);
 else digitalWrite(LED,LOW);

 // Seite zusammenbauen
 String Seite = Temperatur + "°C";

 // Seite übermitteln
 Server.send(200, "text/html", Seite);
}

	Dokumentation Smarthome
	Ziele des Projekts
	Benötigte Bauteile
	Schaltpläne
	Server
	Klient

	Die Programme
	Server
	Klient

