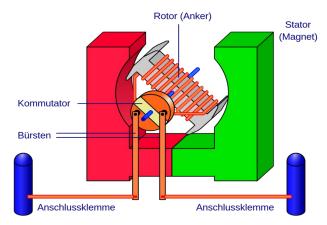
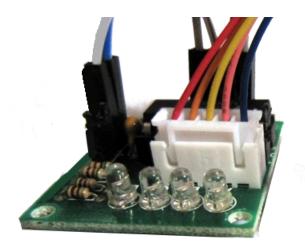

Ziel des Projekts

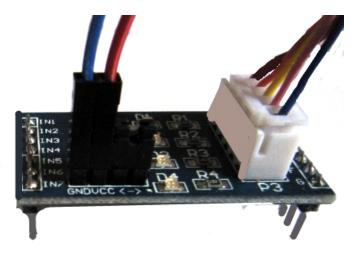

Wenn der Taster gedrückt wird, bewegt sich der auf einem Schrittmotor befestigte Zeiger durch Zufall auf ein farbiges Feld. Ein 4-zeiliges LCD zeigt die Anzahl der Bewegungen, das getroffene Feld und eine Statistik der bisher getroffenen Felder an.

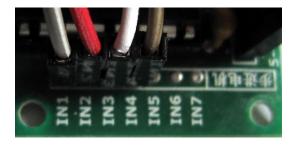
Das Glücksrad besteht aus 4 verschiedenfarbigen Feldern. Das Programm ermittelt eine zufällige Anzahl von Schritten zwischen 1 und 2048. Der Motor dreht bis zur angegebenen Position und stellt anhand der zurückgelegten Schritte die Farbe des Feldes fest.

Die Farbe wird auf einem LCD angezeigt. Zusätzlich wird die Anzahl der "getroffenen" Farben gezählt und ebenfalls angezeigt.

Die Hardware


Quelle: https://commons.wikimedia.org/wiki/File:Gleichstrommaschine.svg


In einem Elektromotor wird durch das Zusammenspiel von Statoren, feststehenden äußeren magnetischen Spulen, und einem sich darin drehenden Rotor eine Drehbewegung erzeugt. Der Strom wird durch Schleifkontakte so zugeführt, dass genau in dem Moment, wo sich Nord-und Südpol angenähert haben, die Stromrichtung im Rotor umgepolt wird.

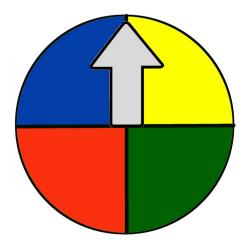

Für den Schrittmotor wird eine Treiberplatine benötigt. In diesem Fall ist es die ULN2003. Zwei mögliche Ausführungen sind hier abgebildet:

Bei der linken Treiberplatine müssen die Steckverbindungen mit Kabeln zum Arduino hergestellt werden, bei der rechten Ausführung kann der linke Teil direkt in den Arduino gesteckt werden.

Bei beiden Varianten wird der Stecker des Motors in die Treiberplatine gesteckt.

Pinbelegung

 $IN1 \rightarrow D4$


 $IN2 \rightarrow D5$

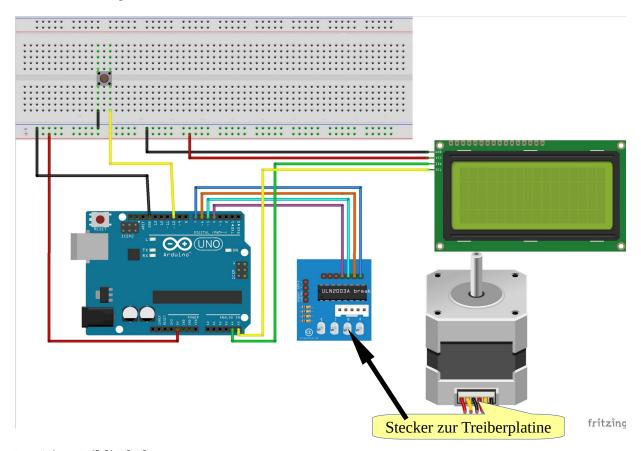
 $IN3 \rightarrow D6$

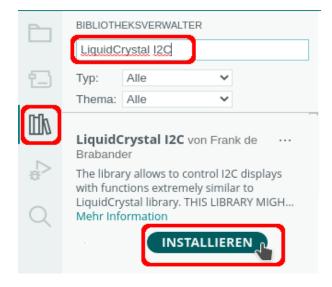
 $IN4 \rightarrow D7$

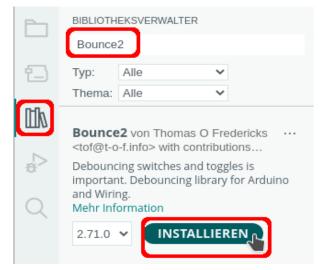
Bei dem Motor handelt es sich um einen Motor mit der Typbezeichnung 28BYJ-48. Im Unterschied zum Servomotor kann der Schrittmotor eine 360°-Drehung ausführen und kann vorwärts und rückwärts laufen.

Ein volle Umdrehung sind bei diesem Motor 2048 Schritte.

Die Vorlage für das Glücksrad und den Pfeil findest du hier.


Befestige das Glücksrad und den Pfeil am Schrittmotor. Achte darauf, dass sich das Glücksrad nicht drehen kann, der Pfeil sich aber frei bewegen kann und sich in der richtigen Position befindet.


Benötigte Bauteile


- → 4-zeiliges LCD mit I²C-Schnittstelle
- **→**Schrittmotor mit Treiberplatine
- **→**Leitungsdrähte

Der Schaltplan

Benötigte Bibliotheken:

Das "Prellen" des Tasters soll mit der Bibliothek Bounce2 verhindert werden. Binde auch die übrigen Bibliotheken ein und definiere die Variablen.

```
#include "Stepper.h"
#include "LiquidCrystal_I2C.h"
#include "Bounce2.h"
LiquidCrystal_I2C lcd(0x27, 20, 4);
// Schritte pro Umdrehung.
int SchritteDrehung = 2048;
 Pinbelegung:
 entweder 4, 6, 5, 7
 oder 5, 7, 4, 6
 diejenige auswählen, bei der die Drehung
 im Uhrzeigersinn ausgeführt wird
*/
Stepper Motor(SchritteDrehung, 5, 7, 4, 6);
int TASTER = 10;
// die Farben
int Rot = 0;
int Blau = 0;
int Gelb = 0;
int Gruen = 0;
// Bibliothek Bounce2
// "Prellverhinderer" für den Taster starten
Bounce Start = Bounce();
```

Der setup-Teil:

```
void setup()
{
    // Instanz des Objekts Bounce für den Taster zuordnen
    // Zeitintervall einstellen
    Start.attach(TASTER);
    Start.interval(20);

pinMode(TASTER, INPUT_PULLUP);

// LCD einschalten
lcd.init();
lcd.backlight();

// Zufallsgenerator starten
    randomSeed(analogRead(0));

// Geschwindigkeit des Motors
    Motor.setSpeed(15);
}
```


Der loop-Teil:

```
void loop()
  // Taster gedrückt
 if (Start.update())
    if (Start.read() == LOW)
      int Minimum = 1;
      int Maximum = SchritteDrehung;
      int Position = random(Minimum, Maximum);
      Motor.step(Position);
      Serial.println(Position);
      lcd.clear();
      lcd.setCursor(0, 0);
      lcd.print("Position: " + String(Position));
      lcd.setCursor(0, 1);
      // Farbe je nach Position bestimmen
      if (Position > 0 && Position < 512)
        lcd.print("Rot");
        Rot ++;
      if (Position > 512 && Position < 1024)
        lcd.print("Blau");
        Blau ++;
      }
      if (Position > 1024 && Position < 1536)
        lcd.print("Gelb");
       Gelb ++;
      if (Position > 1536 && Position < 2048)
        lcd.print("Gr\365n");
        Gruen ++;
      }
      lcd.setCursor(0, 2);
      lcd.print("Rot: " + String(Rot));
      lcd.setCursor(10, 2);
      lcd.print("Blau: " + String(Blau));
      lcd.setCursor(0, 3);
      lcd.print("Gelb: " + String(Gelb));
      lcd.setCursor(10, 3);
      lcd.print("Gr\365n: " + String(Gruen));
      delay(1000);
```

```
// Motor an den Ausgangspunkt zurückfahren
   Motor.step(-Position);
}
}
```

Hartmut Waller letzte Änderung: 23.11.25